Pragmatic multi-scale and multi-physics analysis of Charles Bridge in Prague

<u>Jiří Šejnoha^{1,2}</u> Michal Šejnoha^{1,2} Jan Zeman¹ Jan Novák^{1,2}

with

Zdeněk Janda, Jiří Maděra, Jan Vorel and Jan Sýkora

¹Department of Mechanics Faculty of Civil Engineering Czech Technical University in Prague

²Centre for Integrated Design of Advanced Structures (CIDEAS) Czech Technical University in Prague

5.5. 2010

J. Sejnoha et al. (CTU in Prague)

Charles Bridge in Prague

・ロト ・回ト ・ヨト

- 1357 Foundation stone laid (9th July 1357, 5:31)
- 1406 Completion of Charles Bridge
- 1432 Damage due to flood
- 1496 Erosion by the flow of the water and pier No. 3 drop
- 1503 Repair of damage from years 1432 and 1496
- 1655 Damage to the pier foundations
- 1784 Damage to the foundation of three piers and five vaults
- 1788 Repair of damage from year 1784
- 1890 Vaults No. 5,6 and 7 destroyed, piers No. 4, 8 damaged
- 1903 Rehabilitation of piers No. 3, 4 and 7
- 1975 Major reconstruction, reinforced concrete slab installed
- 2002 More than 100-year flood, the bridge survived

・ロト ・聞 ト ・ 臣 ト ・ 臣 ト ・ 臣

Motivation

Brief historical excursion

http://www.zastarouprahu.cz/kauzy/kmost/promeny.htm

Charles Bridge, 1635

J. Sejnoha et al. (CTU in Prague)

Charles Bridge

5.5. 2010 4 / 30

< 47 ▶

э.

Motivation Brief historical excursion

http://www.zastarouprahu.cz/kauzy/kmost/promeny.htm

Charles Bridge during flood in 1784

J. Sejnoha et al. (CTU in Prague)

Charles Bridge

Motivation Brief historical excursion http://www.zastarouprahu.cz/kauzy/kmost/promeny.htm

Charles Bridge during flood in 1872

J. Sejnoha et al. (CTU in Prague)

イロト イヨト イヨト イヨ

Motivation Brief historical excursion http://www.zastarouprahu.cz/kauzy/kmost/promeny.htm

Charles Bridge during flood in 1890

J. Sejnoha et al. (CTU in Prague)

Motivation Brief historical excursion <u>http://www.za</u>starouprahu.cz/kauzy/kmost/promeny.htm

Charles Bridge during flood in 2002

J. Sejnoha et al. (CTU in Prague)

< A

- 1994–2001 Concept of a major repair of the bridge
 - Removal of concrete slab
 - Replacement of all road layers
 - Replacement of filling between the slab and bridge vaults
 - Strengthening of the whole structure
- 2001–2003 Intensive discussion on the proposed concept
- 2003 New concept of a bridge repair required
- 2005 Team headed by Jiří Šejnoha, FCE in Prague contacted for computational assessment of the bridge
- Analysis requirements
 - Three dimensional non-linear mechanical model
 - At least two- and six-spanned segment
 - Mechanical analysis based on established commercial codes
 - Overall time for analysis approximately two months

< 同 > < ∃ >

- Modeling strategy
- Nonlinear analysis of masonry structures on mesoscale
 - Application of homogenization based on periodic fields
 - Construction of statistically equivalent periodic unit cell
 - Selecting the representative size of SEPUC
 - Evaluation of effective properties homogenized fracture energy
- 3D Macroscale simulations engineering approach
 - Geometrical model
 - Selected loading thermal effects, water pressure, floating vessel impact

Modeling strategy

Analysis overview

J. Sejnoha et al. (CTU in Prague)

Charles Bridge

■ ■ つへで 5.5. 2010 7/30

Modeling strategy

Ideal flowchart

- Fully-coupled
- Multi-scale
- Multi-physics
- Non-stationary
- Three-dimensional
- Currently not feasible

・ロト ・ 四ト ・ ヨト ・ ヨト

Modeling strategy

Pragmatic flowchart

- Fully-uncoupled: emphasis given to mechanical part of analysis
- Multi-scale: unit cell simulations to feed material models
- Multi-physics: separate analysis for individual phenomena
- Stationary/static analysis
- Three-dimensional mechanical analysis
- Feasible within \approx 2 months

A B F A B F

Analysis of masonry structures on mesoscale Concept of periodic unit cell

- Different texture for individual parts of structure
 - Regular masonry of vaults
 - Non-regular masonry of parapet walls
 - Filling quarry masonry
- Data for individual components available from experiments
- "Virtual testing" by the 1st-order homogenization

Definition of periodic unit cell - Statistical descriptors

One-point probability function

$$S_r(x) = P(\chi_r(x=1))$$

Two point probability function

$$S_{rs}(x, y) = P(\chi_r(x)\chi_s(y) = 1)$$

• Ergodicity and statistical homogeneity assumption

$$S_r = c_r$$
 $|\Omega|S_{rs} = \mathcal{F}^{-1}(\widetilde{\chi_r} \cdot \overline{\widetilde{\chi_s}})$

Analysis of masonry structures on mesoscale Definition of periodic unit cell

Objective function - minimization based on genetic algorithms

$$E = \sum_{i} \sum_{j} (S^0_{rs}(i,j) - S_{rs}(i,j))^2$$

Analysis of masonry structures on meso-scale

Material model http://www.cervenka.cz/Web

Small strain plastic fracturing constitutive model

- Menetrey-Willam yield surface in compression
- Rankine-type yield criterion in tension
- Smeared crack model with mesh adjusted softening modulus
 - Energy dissipation is linked to element size

$$\varepsilon^{c} = \frac{w^{c}}{h} \leftarrow h = \alpha \sqrt{A_{e}}$$

- Main input parameters
 - Young's modulus E and Poisson's ratio ν
 - Tensile strength ft and Fracture energy Gf
 - Interfacial properties

Analysis of masonry structures on meso-scale

Quarry masonry model – experimental verification of input parameters

J. Sejnoha et al. (CTU in Prague)

Charles Bridge

5.5. 2010 14 / 30

Analysis of masonry structures on meso-scale

Numerical example - fracture energy from unit cell analysis

Crack pattern

• Homogenized fracture energy - analogy with smeared crack model

$$G_F = \int_0^{W^c} \Sigma \, \mathrm{d} W^c = L \int_0^{E_{\max}} \Sigma \, \mathrm{d} E$$

RILEM-type effective fracture energy estimate

$$G_F pprox rac{LH}{\ell} \int_0^{E_{\max}} \Sigma \,\mathrm{d}E$$

Macroscopic analysis - geometrical model Courtesy of Zdeněk Janda

- Based on extensive geodesic three-dimensional data
- Conversion to simplified CAD model
- Decomposition into quasi-homogeneous sub-volumes

• Two- and six-span variants

Macroscopic analysis - geometrical model

CAD model

J. Sejnoha et al. (CTU in Prague
---------------------	---------------

- 3 →

Macroscopic analysis - geometrical model

Finite element mesh (20,409 nodes; 97,004 linear tetrahedra)

J. Sejnoha et al. (CTU in Prague)

Macroscopic analysis - geometrical model Six-span segment

Six-span model (31,725 nodes, 142,976 linear tetrahedra)

J. Sejnoha et al. (CTU in Prague)

Charles Bridge

5.5. 2010 18 / 30

Actions on structure

Response to

- Self weight
- Temperature impact
- Hydrostatic and hydrodynamic loading during floods
- Impact of ice block
- Impact of a tag boat (2300 t)
- Carrying capacity of the bridge six-span model
 - Construction vehicles

.

Macroscopic analysis - actions on structure Self weight

- Dominant permanent action
- Stages of construction need to be modeled properly

Macroscopic analysis - actions on structure Temperature profiles Courtesy of Jiří Maděra

- Two-dimensional non-stationary coupled heat and moisture transfer during a typical year
- Simulation performed in finite volume code DEPLHIN
- Very good correlation with experimental data $(\pm 5^{0}C)$
- Estimated temperature distribution in winter and summer periods

Macroscopic analysis - actions on structure Temperature change

- Previous analysis gives extremal values of surface and internal temperatures
- Stationary three-dimensional heat transfer analysis with given data
- Input for mechanical model

Macroscopic analysis - actions on structure Water pressure (Čihák, 2002)

Hydrostatic pressure

$$p_s(\mathbf{x}) = h(\mathbf{x}) \rho_w g$$

- Hydrodynamic pressure $p_d(\mathbf{x}) = \frac{1}{2}C(\mathbf{x})\rho_w v_w^2$
- Water velocity derived from independent flow analysis

J. Sejnoha et al. (CTU in Prague)

Macroscopic analysis - actions on structure Vessel impact

- Impact of a 2300 t tag boat into the bridge
- Simplified two-degree of freedom model
- Number of uncertainties (boat and bridge compliances, energy dissipation during impact)
- Parametric study leading to a conservative estimate

Macroscopic analysis - actions on structure Vessel impact

Final comment

The resulting equivalent static force ranging from 8MN to 18MN is comparable to loading due to water pressure for typical flood conditions. The selected value of 12.5 MN is essentially 5x more than the force attributed to the impact of an ice block

Time variation of contact (impact) force

Variation of R_{max} with the c_r / c_p ratio

Analysis results - thermal effects

Dead load \oplus Summer temperature \oplus Elevated water

• Deformed shape of the structure

Distribution of cracks Mode I crack opening displacement

Analysis results - thermal effects

 $\mathsf{Dead} \; \mathsf{load} \oplus \mathsf{Winter} \; \mathsf{temperature} \oplus \mathsf{Elevated} \; \mathsf{water}$

• Deformed shape of the structure

Distribution of cracks Mode I crack opening displacement

Analysis results - thermal effects

 $\mathsf{Dead}\;\mathsf{load}\oplus\mathsf{Summer}\;\mathsf{temperature}\oplus\mathsf{Winter}\;\mathsf{temperature}\oplus\mathsf{Elevated}\;\mathsf{water}$

Residual tensile strength

Distribution of cracks Mode I crack opening displacement

Analysis results - load-bearing capacity (ČSN 736203)

J. Sejnoha et al. (CTU in Prague)

Charles Bridge

Summary and conclusions

- Theoretical outcomes
 - Simplified (= un-coupled) multi-scale and multi-physics approaches fully capable of providing valuable data for practical engineering problems
 - Homogenization approaches allow for partial replacement of experimental procedures
 - Predicted damage of the structure corresponds well to in-situ observations
- Practical outcomes
 - The structure proved to be stable for load combinations both globally and locally
 - Temperature load seems to be the most severe loading case in terms of extent of corresponding damage
 - The load-bearing capacity of the bridge governed by pavement characteristics
 - Foundations are the most critical part of the structure (currently repaired)
 - Only minor reconstruction operations needed